Top-down or bottom-up? How to approach forecasting in a data-driven world.
The role of any good Supply Chain Manager is to ensure regular reporting of the variances between top-down executive targets, and the bottom-up demand of the market. Effectively, this is the budgeting process, and achieving a balance between demand and supply is the best way to stay on target with financial projections.
This process has traditionally been managed by looking back at sales, and using historical information to forecast forward. But let’s be honest, adopting this approach usually means getting it wrong, because responding to historical data that was already built on a flawed model makes very little sense.
True demand vs projected demand
The term “true demand” refers to the amount of product an organisation could feasibly sell in an unconstrained market. If a business has a well-oiled supply chain that runs like clockwork, it should be able to flex and adapt according to demand. So all that’s left for that business to do is put its ear to the ground, find out what the market wants and provide it. The value of sales information in this situation is high. But historical sales information for companies with poor supply chain models is largely useless as all they tell an organisation is what they were able to sell with clunky processes and no visibility of wider consumer trends and macroeconomic shifts.
The term “true demand” refers to the amount of product an organisation could feasibly sell in an unconstrained market.
Minimising lost sales opportunity
The gap between what a business was able to sell and what the market would have bought is referred to as “lost sales opportunity”. Once businesses start thinking in terms of true demand, they are able to minimise this gap and start working towards satisfying the actual demands of the market, rather than hitting sales forecasts.
Digital tools that pull in information from thoughtfully compiled data sets all over the internet can help organisations to understand current demand for their product at any given time. And with technology like Artificial Intelligence and Machine Learning on board, these organisations can set seemingly unrelated data against sales performance, to observe where the impact can be attributed to external circumstances, and predict likely anomalies in demand forecasting.
This technology is the key to businesses unlocking their true sales potential and has the power to move them from sales forecasting, to demand planning. When organisations can more accurately measure the likely demand for their product, they are able to truly optimise all of their operations, across all departments.
Forecast. To predict or estimate a future event or trend. Let’s start with a forecast we’re all very familiar with as an example - the weather. Once upon a time, forecasts were based on historical data captured around certain dates. Then, with the invention of telegraph networks, weather conditions could be observed and shared across […]
Not all SKUs were created equal Many businesses are so focused on building revenue, their profit suffers as a result. Organisations worth their salt know that selling at all costs doesn’t make good business sense. A more sophisticated way to measure and drive success is ROI (Return On Investment). What is the business cost of […]
Understanding demand patterns in the Data Age Demand pattern analysis is becoming increasingly valuable in business, as a way of predicting and preparing for future fluctuations in market demand. The problem is that the “best-practice” models that are still taught and employed today rely solely on historical patterns to make predictions. In reality, looking backwards […]
Inject the smarts into your new product planning Consumers now have more choice than ever before - of what to buy, and where to buy it. The explosion of e-commerce has driven product and competitor proliferation to all-new levels, so what worked before (i.e. analysing previous product performance) no longer serves as an accurate indicator […]
Demand forecasting is always wrong. Thankfully. If demand forecasting was a precise science, we would be out of business. Organisations would apply their tried and tested formulas, and would emerge from their endeavours armed with 100% accurate predictions to take into their next phase of demand planning. Their wash-ups would show an exact correlation between […]
Demand planning + supply planning = integrated business planning If demand planning is forecasting customer demand, while supply planning is managing supply according to these forecasts, you’d be forgiven for thinking that these functions went hand-in-hand. All too often though, demand planning and supply planning departments work to different agendas. One driven by ensuring sufficient […]
A formula for accurate demand planning at store level (Hint: it doesn’t start with “=”) Technology is the biggest enabler of people in the digital age. Yet arguably, it’s also the biggest threat to the modern day workforce. When it comes to using technology to enhance demand planning in business, harnessing digital tools in a […]
The not-so-basics of Demand Planning At its simplest, effective Demand Planning means reducing the gap between held inventory and actual sales. It’s about meeting demand in the most efficient way possible to help retail organisations avoid stock-outs at one end of the scale, and wastage at the other. Yet this vital role is often drowned […]
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.